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assume the initial condition 

f(t=0,v) = 5(v-V0) 

and thus can write 

(33) 

f(t,v)= \ ° f da exp! I t - f ° dv'/b(v')~\ 1 (34) 
2wi J c [ L J v J J 

= A(v,VMt-[ drf/btf)]. (35) 

A(v,Vo) is some (normalizing) function of v. 
This is just the form of the approximate distribution 

function (2). Furthermore, if we include terms of next-
highest order, the second derivative of / appears in (29) 
but it is still possible to solve and invert the Laplace 
transform, by making use of the fact that the coefficient 
of d2f/dv2 is small. The result is a distribution function 
of the kind (4), where the Gaussian shape arises from 

use of saddle-point techniques in inverting the Laplace 
transform. 

Finally, we remark that in the case where we>v on 
the average, we can put 
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and then the 8 function in (35) can be replaced by 

d[t+r\n-
/ v6+u6 \ 
h+rln 
\ F0

3+W 
(38) 

This is exactly the result (16) in Butler and 
Buckingham's paper. 

P H Y S I C A L R E V I E W V O L U M E 13 5 , N U M B E R 4A 17 A U G U S T 1 9 6 4 

Perturbation Correction to the Radial Distribution Function* 
F. LADO 

Physics Department, University of Florida, Gainesville, Florida 
(Received 30 March 1964) 

The effect on the radial distribution function g(r) of adding a small, long-range interaction to a short-range 
potential is investigated. Two equations are obtained for the corrected g, corresponding to approximations 
similar to those used in obtaining the Percus-Yevick and convolution hypernetted chain integral equations. 
The equations relate the "short-range" g (assumed known) and the long-range perturbing potential to the g 
corresponding to the complete potential. These equations and equations previously obtained by Broyles, 
Sahlin, and Carley and Hemmer have been tested numerically for a model having a negative Gaussian-Mayer 
/function, for which near-exact solutions are available from the work of Helfand and Kornegay. 

I. INTRODUCTION 

TH E thermodynamic behavior of a classical, one-
component, monatomic fluid is completely char

acterized by the radial distribution function gir) when 
the potential energy of the system can be written as 
the sum of pair potentials. For an TV-particle system in 
a volume V, g (r) is defined as 

V2 

g(0=-

/ • • • / exp—fl X ct>ijdrZ' • • dtN 

J V J i<3 

-" exp -13 X <t>ijd*v • -drN 

J V J i<3 

(1) 

when the limits N —> °°, V —> °° are taken such that 
p==N/V remains constant; <£#==<£(jr*— *"y|) is the- pair 
potential and f$= 1/kT. 

* Supported in part by the National Science Foundation and 
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This paper is concerned with the effect on g(r)y and 
hence on the thermodynamic quantities, of a small 
change in the potential <j>(r). A solution to this problem 
could be used in a variety of applications. The need 
for a method to correct g(r) arises, for example, in 
Monte Carlo calculations of the radial distribution 
function, where the long-range tail of a potential such 
as the Coulomb potential must necessarily be truncated 
at some finite distance. The effect of the neglected part 
of the potential must be found for a complete solution.1 

Furthermore, if the function g(r) is known for some 
temperature T, g(r) for some slightly different tem
perature Tf may be easily found by considering fir<j> (r), 
/3'= 1/kT', to be a perturbation of 00(r) at T and 
applying the corresponding correction. This obviates 

1 D . D. Carley, Monte Carlo calculations for the Coulomb 
potential (to be published). The same problem arises from the 
Lennard-Jones 6-12 potential; W. W. Wood and F. R. Parker, 
J. Chem. Phys. 27, 720 (1957). 
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the need for another long, iterative solution of the 
integral equations for g(r). Finally, the effect of adding 
a long-range, attractive tail to a sharp barrier potential 
can be studied. A model with an exponential attractive 
potential added to a hard core has recently been in
vestigated by Kac, Uhlenbeck, and Hemmer.2 This 
model displayed a phase transition in the proper limit 
of the attractive potential, and its extension to three 
dimensions is of particular interest. 

Two recent papers have dealt with this problem. 
Broyles, Sahlin, and Carley3 (BSC) employed a method 
of collective coordinate integration to evaluate the 
Fourier transform of Eq. (1). By explicit summation 
of diagrams, Hemmer4 has obtained two asymptotic 
equations for the corrected g(r), valid in the large r 
and small r regions. The equations derived in these 
papers, together with two equations for g{r) obtained 
in the next section, have been tested on a model for 
which exact solutions are known from the work of 
Helfand and Kornegay.5 The results are given in Sec. 
I I I . I t is also shown that one of the equations derived 
in Sec. I I reduces, in the large r region, to the BSC 
equation and Hemmer's first-order solution for the 
same region. 

II. THEORY 

The 3iV-dimensional integral of Eq. (1) can be made 
more tractable by the use of Mayer / functions, re
sulting in the well-known expansion of G(r) in powers 
of the density6,7 

G(r) = « ( r ) - l = / ( r ) + p + / t o ] C ( r ) , (2) 

C(r)=T, P " 2 — - / I I fa I I dtj, (3) 
n=i iJL(n,y) J i,s y=3 

where 
h=f(rif) = e-W»-l, (4) 

and a 1, 2 index has been suppressed on r. Each power 
of the density in Eq. (3) is associated with several 
integrals S. The integrals in the expansion of C(r) can 

an = p<S\ + ^ [ / A + Z ^ + Z ^ 

FIG. 1. Diagram expansion of C(r). 

2 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 
4, 216 (1963). 

3 A. A. Broyles, H. L. Sahlin, and D. D. Carley, Phys. Rev. 
Letters 10, 319 (1963). 

4 P. C. Hemmer, J. Math. Phys. 5, 75 (1964). 
5 E. Helfand and R. L. Kornegay (to be published). 
6 J. de Boer and A. Michels, Physica 6, 409 (1939); J. E. Mayer 

and E. Montroll, J. Chem. Phys. 9, 2 (1941); J. de Boer, Physica 
15, 680 (1949). 

7 Here and in the remainder of this section we have adopted, 
with some slight alterations, the notation of M. Klein and M. S. 
Green, J. Chem. Phys. 39, 1367 (1963). 

S(r) = p cA> + ̂ [/"A) + P\ + /^bj 
-f . . • 

P(r, = ^ > 2 < ^ > + • • • 

B(r) = ^ P 2 < | > + • • • 

FIG. 2. The series, parallel, and bridge sets. 

be represented by diagrams with a one-to-one corre
spondence in the following manner: An fi3- in the 
integrand is drawn as a line connecting the points i and 
j , which are drawn as dots if they are variables of 
integration (field points) or circles if points 1 or 2 
(fixed points); fi(n,y) is a symmetry number for the 
generic (unlabeled points) diagrams dependent on the 
number of field points (n) and the diagram type (7). 
The first few terms in the expansion of C(r) in this 
shorthand notation are shown in Fig. 1, where the 
density and symmetry factors have been explicitly 
written. These diagrams can be classed into three 
groups according to their topological characteristics: 

(a) A series, or nodal, diagram contains at least one 
field point (called a node) through which all paths 
connecting 1 and 2 must pass. 

(b) A parallel diagram contains at least two paths 
between 1 and 2 which are connected only at 1 and 2. 

(c) A bridge diagram is one which is neither series 
nor parallel. 

The sum of all series, parallel, and bridge diagrams 
will be denoted by S(r), P(r), and B(r)9 respectively. 
To the second power in density these sets are as shown 
in Fig. 2. Then we have 

C(r) = S(r)+P(r)+B(r), (5) 
and 

G(r) = S(r)+P(r)+B(r) 

+f(r)Zl+S(r)+P(r)+B(r)l (6) 
or 

g(r)«WW = l + 5 ( r ) + P ( r ) + i J ( f ) , (7) 

We will denote the set of all non-nodal diagrams in the 
expansion of G(r) by T(r), 

T(r) = P(r)+B(r)+f(r)£l+S(r)+P(r)+B(r)l, (8) 

= g(r)f(r)et»M+P(r)+B(r), (9) 

and thus 
G(r) = S(r)+T(r). (10) 

The set S(r) is factorable in Fourier transform space 
and can be eliminated in the following way. Let r3 be 
the first node encountered along a path from 1 to 2 in 
a typical diagram of S(r). Then the subdiagram between 
1 and 3 must be of a non-nodal type, i.e., a member of 
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T(r). From 3 to 2 however there is no restriction on the 
subdiagram, either nodal or non-nodal being possible, 
hence some member of G(r). Summing over all possible 
subdiagrams and integrating over r3 gives the set S(r), 

where 

> - ' / 5(r) = p / r ( f i , ) G ( f M ) * , , 

so that we may write 

' / 
G(r) = r ( r )+p T(ru)G(rrfdr,. 

(ID 

(12) 

This is the Ornstein-Zernicke integral equation8 which 
gives G{r) when the direct correlation function T(r) is 
known. The Fourier transforms of G(r) and T(r) are 
thus seen to satisfy the relation 

G(k) = f ( k ) / [ l - p f ( k ) ] . (13) 

Also, from Eqs. (10) and (11), we get that 

5(k)=pf»(k)/[i-Pf(k)]. (w) 

The set P(r) has the property that its members 
factor in direct space since there is no integration over 
points 1 and 2. An analysis of the diagrams of this set 
leads finally to the equation9 

P(r) = g(r)e^-l-\ng(r)eW\ (15) 

which can be used to eliminate P(r) in Eq. (7), yielding 

g(r)eMM = e8M+BM. (16) 

We note in passing that Eqs. (9), (12), and (15) result 
in the convolution-hypernetted chain (CHNC) integral 
equation9 when the set B (r) is neglected, while neglect 
of P(r)+B(r) in Eq. (9) yields, with Eq. (12), the 
Percus-Yevick (PY) integral equation.10"12 

We now assume that we have available a radial 
distribution function corresponding to the short range 
potential <j>sr(r): 

g8r(r) = expl-/3<l>sr(r)+Ssr(r)+Bsr(r)']. (17) 

We are interested in rinding g(r) for <j>(r)=^<j>8r{r) 
+<j>lr(r), where 4>lr{r) is a long-range potential assumed 
weak compared to <t>8r(r). Then 

g(r) = exp\:-^(r)+S(r)+B(r)2, (18) 

= r ( f ) e x p [ - ^ ' ( r ) + A S ( r ) ] , (19) 

8 L. S. Ornstein and F. Zernicke, Proc. Acad. Sci. Amsterdam 
17, 793 (1914). 

9 E . Meeron, J. Math. Phys. 1, 192 (1960); T. Morita, Progr. 
Theoret. Phys. (Kyoto) 20, 920 (1958); J. M. J. VanLeeuwen, 
J. Groeneveld, and J. de Boer, Physica 25, 792 (1959); M. S. 
Green, Hughes Aircraft Corporation Technical Report, 1959 
(unpublished). 

10 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958); 
J. K. Percus, Phys. Rev. Letters 8, 462 (1962). 

11 A. A. Khan, Phys. Rev. 134, A367 (1964). 
12 George Stell, Physica 29, 517 (1963). 

AS(r)=S(r)-S'r(r) (20) 

and AB(r), similarly denned, has been neglected.15 This 
will be called the CHNC-type approximation. We have 
further from Eqs. (13) and (14) that 

AS(k) = 
Pf2(k) pf"»(k) 

l-pf(k) l -pf - (k) 

[l+P<>(k)]2Af(k) 

(21) 

-Af(k), (22) 

where 
i-P[i+Pe-(k)]Ar(k) 

AT(r)~T(r)-Ts'(r). (23) 

We now need to approximate AT(r). Since <£(r) has 
been written as the sum of long- and short-range terms, 
the Mayer / function for 4>u m a v be written 

Jij==Jij ~T~JiJ \jij J il • \^) 

Each integrand of T(r) then becomes a sum of inte
grands of mixed long- and short-range bonds. One of 
these will contain only short-range bonds fijsr. Another 
will contain one long-range bond fi/r or compound 
bond fijsrfi/r, and all remaining bonds of the short-
range type, and so on, until no short-range bonds are 
present. The first group will sum to give Tsr(r). The 
first term of the remainder is the single bond flr(r) 
«•— j&£Zr(r), since the perturbing potential is assumed 
weak. We have thus to lowest order 

(A) Ar(r)=-/ty"(r). (25) 

Higher approximations to AT(r) may easily be accom
modated and are discussed in Sec. IV. 

Insertion of the Fourier transform of Eq. (25) into 
Eq. (22) then gives, with Eq. (19), the final result, 

g(r) = gsr(r)e-^\ (26) 

where the Fourier transform of H(r) is 

p+pg"(k ) ]W(k) 
#(k) = 

i+pCi+P5-(k)]^"-(k) 
(27) 

In the large r limit where g(r) and gsr(r) both ap
proach 1, we may take the logarithm of both sides of 
Eq. (26) and replace lng(r) by g(r) — l and lngsr(r) by 
gsr(r) — l to obtain 

G(r) = G»(r)-H(r), (28) 

which is the BSC equation.3 This equation has been 
found to give satisfactory solutions for g(r) at large r, 
but runs into difficulty at small r, often giving negative 
g's.u The derivation above indicates that the BSC 

13 The form of Eq. (19) was suggested by A. A. Khan (private 
communication). 

14 D. D. Carley, Phys. Rev. 131, 1406 (1963); H. L. Sahlin, 
thesis, University of Florida, 1963 (unpublished). 



A1016 F . L A D O 

equation is not applicable at small r. If Eq. (28) is 
further approximated by assuming that the first term 
on the right is negligible, the resulting equation is 
equivalent to that obtained by Hemmer,4 in first order, 
for the large r region. 

We note in passing that in the limit 4>sr(r)—>0 so 
that <t>lr(r)-*<i)(r), Eqs. (26) and (27) give the Debye-
Hiickel15 g(r) when <£(r) is specified as the Coulomb 
potential. 

An equation employing a PY-type approximation, 
where AP(r)+AB(r) is neglected, is easily obtained 
from Eqs. (7), (22), and (25). The result is 

g(f)==^(f)^*''(r) + ^*(r)r^Zr( f)_ jB r( f)] t (29) 

Equations (26) and (29), with H(r) determined by 
Eq. (27), are the main results of this paper. In the next 
section a numerical test is made of these equations and 
the results compared to computations with the BSC 
and Hemmer equations. 

III. THE GAUSSIAN MODEL 

For a proper test of Eqs. (26) and (29) we need an 
exact solution of gsr(r), so that no additional approxi
mations are introduced, as well as of the final g(r) to 
permit a comparison of results. Such solutions are 
available, and can be used for this purpose, for a model 
with a Mayer / function approximated by a negative 
Gaussian. Helfand and Kornegay5 have explicitly 
evaluated the coefficients gn(r) in 

g(r) = « r " < r > [ i + £ p » g t t ( r ) ] (30) 

up to ^ = 5 for this Gaussian model. At small values of 
density the g(r) obtained in this way is essentially 
exact, the criterion being that p5gz(r) be small. 

9(x) 

0.5 

—• gsr(X) Exact 
— g(X) Exact 
— BSC 

Hemmer 
• Eq.(29) 

Eq.(26) 

p-OA 
m = o.6 

0.5 

FIG. 3. Comparison of the computed g's for the Gaussian model 
with the exact solution of Helfand and Kornegay for a density of 
0.4. The parameter of perturbation m is 0.6. 

/?<£sr(x) 
-/3cjb l r(x) 

FIG. 4. The corre
sponding short-range 
potential and per
turbing long-range 
potential for the g's 
of Fig. 3. 

The Mayer / function is given by 

(31) 

and the unit of distance is selected so as to make the 
second virial coefficient of the pressure identical with 
that of a gas of hard spheres of diameter d. The reduced 
units are then 

x=r/d, p=Nd*/V, 
where 

d = ( f ) i / V / 6 a = 1.100a. (32) 

The potential corresponding to a solution g(x) is 

j 8 0 ( « ) = - l n ( l - « r i - ^ ) . (33) 

We can obtain a g(x) for a slightly different potential 
in the following way. Perform a coordinate trans
formation x' = x/tn, where 0<m^l. Then the function 
$(x) = <l>(%/m) will be of the same form as </>(%) but go 
to zero sooner. We will call ^(x/m) the short-range 
potential, <£sr(x). The corresponding gsr(x) is obtained 
by replacing x by x/m and p by ptn* in the right-hand 
side of Eq. (30). 

With (j>lr(x) given by 

*" ( * ) = * ( * ) - * " ( * ) , (34) 

16 P. Debye and E. Huckel, Z. Physik 24, 185 (1923). 

and the gsr(x) obtained above, Eqs. (26) and (29) have 
been used to compute g(x). This g{x) was then compared 
with the known g(x) from Eq. (30). The same input 
data were used to compute g(x) from the BSC equation, 
Eq. (28), and the two first-order asymptotic forms of 
g(x) obtained by Hemmer, Eqs. (35) and (41) of Ref. 4. 
(The application of Hemmer's equations to the Gauss
ian model should be qualified by the fact that a "hard" 
barrier short-range potential was assumed in their 
derivation, a condition not quite satisfied here.) 

Calculations were made for densities of 0.1, 0.2, 0.3, 
and 0.4, for which the truncated series for g(x) yields 
an essentially exact solution. For each value of density, 
four values of the parameter m were taken, tn=0.9, 
0.8, 0.7, and 0.6, representing successively larger 
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perturbations. The results for p=0.4, m=0.6 are shown 
in Fig. 3. We see that, as expected, g(x) computed from 
the BSC equation compares favorably with the exact 
g(x) in the large x region, but becomes far too small as 
it approaches the origin. Hemmer's two asymptotic 
equations yield good agreement in the small and large 
x limits but allow no means of interpolation for inter
mediate values of x. Of the two equations obtained in 
this paper, that corresponding to the PY-type approxi
mation gives a better result for g(x), although an 
additional infinite set of diagrams has been neglected 
in its derivation. As with the PY integral equation, 
this is explained on the basis of cancellations between 
the sets P(r) and B(r).n The potentials for the g's of 
Fig. 3 are shown in Fig. 4. The results of other cases 
for Eqs. (26) and (29) are given in Fig. 5 in the form 
of rms deviation from the exact g(x), where the rms is 
defined by 

N 

rms= {N~l ]£ ZgGHj^)~gcompU^)JV12' (35) 
i=i 

Here N is the number of points taken in the numerical 
solutions and A the interval. The superscripts on g(x) 

0.02 r 

FIG. 5. The rms devi
ations from the exact 
Gaussian model g(x) for 
g computed from Eq. 
(26) (dashed line) and 
Eq. (29) (solid line). 
Decreasing m corre
sponds to increasing 
perturbation of the 
potential. 

0.02 

0.01 

0.02 

p = 0.3 

P * 0.4 

o.03 r 

0.02 h 

FIG. 6. Density de
pendence of the rms de
viations from the exact 
Gaussian model g(x) for 
g's computed by neg
lecting AB(x)+AP(x) 
and approximating 
AT(x) by (A), (B), and 
(C). The value of m is 
0.6. 

refer to the exact and computed g's. We note from Fig. 
5 that the rms values obtained for Eqs. (26) and (29) 
are relatively insensitive to changes in density. 

IV. HIGHER APPROXIMATIONS 

More terms may easily be included in the evaluation 
of AT(r). Thus in the diagram expansion of T{r) with 
short- and long-range bonds, we may retain beyond 
Tsr(r) both the single bond flr(r) and the smaller 
compound bond fsr(r)flr(r) to give 

(B) AT(r) = <rM"Wfr(r). (36) 

Beyond this all diagrams with a direct bond between 
1 and 
yield 

2, either f12
sr or fnlrfi2sr, may be summed to 

(C) AT(r) = g»(r)f'(r). (37) 

i.o 0.8 0.6 

At small densities these higher approximations do 
indeed lead to successively more accurate g's than does 
(A), Eq. (25), but at the price of worse answers at 
larger densities. This is seen for the Gaussian model in 
Fig. 6, where the rms values for the equations resulting 
from the PY-type approximation and approximations 
(A), (B), and (C), are shown as functions of the 
density for m=0.6. 
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